Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Event Detection, Clustering, and Use Case Exposition in Micro-PMU Measurements (2007.15237v2)

Published 30 Jul 2020 in eess.SP, cs.CV, cs.SY, and eess.SY

Abstract: Distribution-level phasor measurement units, a.k.a, micro-PMUs, report a large volume of high resolution phasor measurements which constitute a variety of event signatures of different phenomena that occur all across power distribution feeders. In order to implement an event-based analysis that has useful applications for the utility operator, one needs to extract these events from a large volume of micro-PMU data. However, due to the infrequent, unscheduled, and unknown nature of the events, it is often a challenge to even figure out what kind of events are out there to capture and scrutinize. In this paper, we seek to address this open problem by developing an unsupervised approach, which requires minimal prior human knowledge. First, we develop an unsupervised event detection method based on the concept of Generative Adversarial Networks (GAN). It works by training deep neural networks that learn the characteristics of the normal trends in micro-PMU measurements; and accordingly detect an event when there is any abnormality. We also propose a two-step unsupervised clustering method, based on a novel linear mixed integer programming formulation. It helps us categorize events based on their origin in the first step and their similarity in the second step. The active nature of the proposed clustering method makes it capable of identifying new clusters of events on an ongoing basis. The proposed unsupervised event detection and clustering methods are applied to real-world micro-PMU data. Results show that they can outperform the prevalent methods in the literature. These methods also facilitate our further analysis to identify important clusters of events that lead to unmasking several use cases that could be of value to the utility operator.

Citations (35)

Summary

We haven't generated a summary for this paper yet.