Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time detection of a change-point in a linear expectile model (2007.15137v1)

Published 29 Jul 2020 in stat.ME

Abstract: In the present paper we address the real-time detection problem of a change-point in the coefficients of a linear model with the possibility that the model errors are asymmetrical and that the explanatory variables number is large. We build test statistics based on the cumulative sum (CUSUM) of the expectile function derivatives calculated on the residuals obtained by the expectile and adaptive LASSO expectile estimation methods. The asymptotic distribution of these statistics are obtained under the hypothesis that the model does not change. Moreover, we prove that they diverge when the model changes at an unknown observation. The asymptotic study of the test statistics under these two hypotheses allows us to find the asymptotic critical region and the stopping time, that is the observation where the model will change. The empirical performance is investigated by a comparative simulation study with other statistics of CUSUM type. Two examples on real data are also presented to demonstrate its interest in practice.

Summary

We haven't generated a summary for this paper yet.