Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Return of Lexical Dependencies: Neural Lexicalized PCFGs (2007.15135v1)

Published 29 Jul 2020 in cs.CL and cs.LG

Abstract: In this paper we demonstrate that $\textit{context free grammar (CFG) based methods for grammar induction benefit from modeling lexical dependencies}$. This contrasts to the most popular current methods for grammar induction, which focus on discovering $\textit{either}$ constituents $\textit{or}$ dependencies. Previous approaches to marry these two disparate syntactic formalisms (e.g. lexicalized PCFGs) have been plagued by sparsity, making them unsuitable for unsupervised grammar induction. However, in this work, we present novel neural models of lexicalized PCFGs which allow us to overcome sparsity problems and effectively induce both constituents and dependencies within a single model. Experiments demonstrate that this unified framework results in stronger results on both representations than achieved when modeling either formalism alone. Code is available at https://github.com/neulab/neural-lpcfg.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com