Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Hedging of Long-Term Financial Derivatives (2007.15128v1)

Published 29 Jul 2020 in q-fin.RM, q-fin.CP, and q-fin.ST

Abstract: This study presents a deep reinforcement learning approach for global hedging of long-term financial derivatives. A similar setup as in Coleman et al. (2007) is considered with the risk management of lookback options embedded in guarantees of variable annuities with ratchet features. The deep hedging algorithm of Buehler et al. (2019a) is applied to optimize neural networks representing global hedging policies with both quadratic and non-quadratic penalties. To the best of the author's knowledge, this is the first paper that presents an extensive benchmarking of global policies for long-term contingent claims with the use of various hedging instruments (e.g. underlying and standard options) and with the presence of jump risk for equity. Monte Carlo experiments demonstrate the vast superiority of non-quadratic global hedging as it results simultaneously in downside risk metrics two to three times smaller than best benchmarks and in significant hedging gains. Analyses show that the neural networks are able to effectively adapt their hedging decisions to different penalties and stylized facts of risky asset dynamics only by experiencing simulations of the financial market exhibiting these features. Numerical results also indicate that non-quadratic global policies are significantly more geared towards being long equity risk which entails earning the equity risk premium.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com