Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Defense Against Byzantine Poisoning Attacks in Federated Learning (2007.15030v2)

Published 29 Jul 2020 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: Federated learning, as a distributed learning that conducts the training on the local devices without accessing to the training data, is vulnerable to Byzatine poisoning adversarial attacks. We argue that the federated learning model has to avoid those kind of adversarial attacks through filtering out the adversarial clients by means of the federated aggregation operator. We propose a dynamic federated aggregation operator that dynamically discards those adversarial clients and allows to prevent the corruption of the global learning model. We assess it as a defense against adversarial attacks deploying a deep learning classification model in a federated learning setting on the Fed-EMNIST Digits, Fashion MNIST and CIFAR-10 image datasets. The results show that the dynamic selection of the clients to aggregate enhances the performance of the global learning model and discards the adversarial and poor (with low quality models) clients.

Citations (30)

Summary

We haven't generated a summary for this paper yet.