Papers
Topics
Authors
Recent
Search
2000 character limit reached

Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-$t$ distribution

Published 29 Jul 2020 in math.ST and stat.TH | (2007.14980v1)

Abstract: In this paper, we compute doubly truncated moments for the selection elliptical (SE) class of distributions, which includes some multivariate asymmetric versions of well-known elliptical distributions, such as, the normal, Student's t, slash, among others. We address the moments for doubly truncated members of this family, establishing neat formulation for high order moments as well as for its first two moments. We establish sufficient and necessary conditions for the existence of these truncated moments. Further, we propose optimized methods able to deal with extreme setting of the parameters, partitions with almost zero volume or no truncation which are validated with a brief numerical study. Finally, we present some results useful in interval censoring models. All results has been particularized to the unified skew-t (SUT) distribution, a complex multivariate asymmetric heavy-tailed distribution which includes the extended skew-t (EST), extended skew-normal (ESN), skew-t (ST) and skew-normal (SN) distributions as particular and limiting cases.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.