Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A decomposition formula for fractional Heston jump diffusion models (2007.14328v1)

Published 28 Jul 2020 in q-fin.PR and math.PR

Abstract: We present an option pricing formula for European options in a stochastic volatility model. In particular, the volatility process is defined using a fractional integral of a diffusion process and both the stock price and the volatility processes have jumps in order to capture the market effect known as leverage effect. We show how to compute a martingale representation for the volatility process. Finally, using It^o calculus for processes with discontinuous trajectories, we develop a first order approximation formula for option prices. There are two main advantages in the usage of such approximating formulas to traditional pricing methods. First, to improve computational effciency, and second, to have a deeper understanding of the option price changes in terms of changes in the model parameters.

Summary

We haven't generated a summary for this paper yet.