Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz graphs and currents in Heisenberg groups (2007.14286v1)

Published 28 Jul 2020 in math.MG, math.CA, math.DG, math.FA, and math.OC

Abstract: The main result of the present paper is a Rademacher-type theorem for intrinsic Lipschitz graphs of codimension $k\leq n$ in sub-Riemannian Heisenberg groups $\mathbb Hn$. For the purpose of proving such a result we settle several related questions pertaining both to the theory of intrinsic Lipschitz graphs and to the one of currents. First, we prove an extension result for intrinsic Lipschitz graphs as well as a uniform approximation theorem by means of smooth graphs: these results stem both from a new definition (equivalent to the one introduced by F. Franchi, R. Serapioni and F. Serra Cassano) of intrinsic Lipschitz graphs and are valid for a more general class of intrinsic Lipschitz graphs in Carnot groups. Second, our proof of Rademacher's Theorem heavily uses the language of currents in Heisenberg groups: one key result is, for us, a version of the celebrated Constancy Theorem. Inasmuch as Heisenberg currents are defined in terms of Rumin's complex of differential forms, we also provide a convenient basis of Rumin's spaces. Eventually, we provide some applications of Rademacher's Theorem including a Lusin-type result for intrinsic Lipschitz graphs, the equivalence between $\mathbb H$-rectifiability and ``Lipschitz'' $\mathbb H$-rectifiability, and an area formula for intrinsic Lipschitz graphs in Heisenberg groups.

Summary

We haven't generated a summary for this paper yet.