Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-invariants symétriques de contractions paraboliques (2007.14185v2)

Published 28 Jul 2020 in math.RT

Abstract: Let $K$ be an algebraically closed field with characteristic zero, and $\mathfrak{g}$ a Lie algebra. Let $Y(\mathfrak{g})$ be the subalgebra of the symmetric algebra $S(\mathfrak{g})=K[\mathfrak{g}*]$ made of the polynomials which are invariant under the adjoint action. Also define $Sy(\mathfrak{g})$ as the algebra generated by elements of $S(\mathfrak{g})$ for which the adjoint action acts homothetically. When $\mathfrak{q}$ is a parabolic contraction in type $A$ or $C$, and in some cases in type $B$, Panyushev and Yakimova showed that the algebra of invariants $Y(\mathfrak{q})$ is an algebra of polynomials. Using Panyushev's and Yakimova's result, we show the polynomiality of $Sy(\mathfrak{q})$ by constructing an algebraically free set of generators in type $A$ and in some cases in type $C$. We also study an example in type $C$ where $Sy(\mathfrak{q})$ is not polynomial.

Summary

We haven't generated a summary for this paper yet.