Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohomological Hall algebras and perverse coherent sheaves on toric Calabi-Yau 3-folds (2007.13365v3)

Published 27 Jul 2020 in math.QA, hep-th, math.AG, and math.RT

Abstract: We study the Drinfeld double of the (equivariant spherical) Cohomological Hall algebra in the sense of Kontsevich and Soibelman, associated to a smooth toric Calabi-Yau 3-fold $X$. By general reasons, the COHA acts on the cohomology of the moduli spaces of certain perverse coherent systems on $X$ via "raising operators". Conjecturally the COHA action extends to an action of the Drinfeld double by adding the "lowering operators". In this paper, we show that the Drinfeld double is a generalization of the notion of the Cartan doubled Yangian defined earlier by Finkelberg and others. We extend this "$3d$ Calabi-Yau perspective" on the Lie theory furthermore by associating a root system to certain families of $X$. We formulate a conjecture that the above-mentioned action of the Drinfeld double factors through a shifted Yangian of the root system. The shift is explicitly determined by the moduli problem and the choice of stability conditions, and is expressed explicitly in terms of an intersection number in $X$. We check the conjectures in several examples, including a special case of an earlier conjecture of Costello.

Summary

We haven't generated a summary for this paper yet.