Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Attentive Multi-Layer Aggregation with Feature Recalibration and Normalization for End-to-End Speaker Verification System (2007.13350v2)

Published 27 Jul 2020 in eess.AS, cs.LG, and cs.SD

Abstract: One of the most important parts of an end-to-end speaker verification system is the speaker embedding generation. In our previous paper, we reported that shortcut connections-based multi-layer aggregation improves the representational power of the speaker embedding. However, the number of model parameters is relatively large and the unspecified variations increase in the multi-layer aggregation. Therefore, we propose a self-attentive multi-layer aggregation with feature recalibration and normalization for end-to-end speaker verification system. To reduce the number of model parameters, the ResNet, which scaled channel width and layer depth, is used as a baseline. To control the variability in the training, a self-attention mechanism is applied to perform the multi-layer aggregation with dropout regularizations and batch normalizations. Then, a feature recalibration layer is applied to the aggregated feature using fully-connected layers and nonlinear activation functions. Deep length normalization is also used on a recalibrated feature in the end-to-end training process. Experimental results using the VoxCeleb1 evaluation dataset showed that the performance of the proposed methods was comparable to that of state-of-the-art models (equal error rate of 4.95% and 2.86%, using the VoxCeleb1 and VoxCeleb2 training datasets, respectively).

Summary

We haven't generated a summary for this paper yet.