Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the l.c.m. of shifted Fibonacci numbers (2007.13330v1)

Published 27 Jul 2020 in math.NT

Abstract: Let $(F_n){n \geq 1}$ be the sequence of Fibonacci numbers. Guy and Matiyasevich proved that \begin{equation*} \log \operatorname{lcm} (F_1, F_2, \dots, F_n) \sim \frac{3 \log \alpha}{\pi2} \cdot n2 \quad \text{as } n \to +\infty, \end{equation*} where $\operatorname{lcm}$ is the least common multiple and $\alpha := \big(1 + \sqrt{5}) / 2$ is the golden ratio. We prove that for every periodic sequence $\mathbf{s} = (s_n){n \geq 1}$ in ${-1,+1}$ there exists an effectively computable rational number $C_{\mathbf{s}} > 0$ such that \begin{equation*} \log \operatorname{lcm} (F_3 + s_3, F_4 + s_4, \dots, F_n + s_n) \sim \frac{3 \log \alpha}{\pi2} \cdot C_\mathbf{s} \cdot n2 , \quad \text{as } n \to +\infty . \end{equation*} Moreover, we show that if $(s_n)_{n \geq 1}$ is a sequence of independent uniformly distributed random variables in ${-1,+1}$ then \begin{equation*} \mathbb{E}\big[\log \operatorname{lcm} (F_3 + s_3, F_4 + s_4, \dots, F_n + s_n)\big] \sim \frac{3 \log \alpha}{\pi2} \cdot \frac{15 \operatorname{Li}_2(1 / 16)}{2} \cdot n2 , \quad \text{as } n \to +\infty , \end{equation*} where $\operatorname{Li}_2$ is the dilogarithm function.

Summary

We haven't generated a summary for this paper yet.