Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Approximation Schemes for Stochastic Probing and Selection-Stopping Problems

Published 26 Jul 2020 in cs.DS and cs.GT | (2007.13121v3)

Abstract: In this paper, we propose a general framework to design {efficient} polynomial time approximation schemes (EPTAS) for fundamental stochastic combinatorial optimization problems. Given an error parameter $\epsilon>0$, such algorithmic schemes attain a $(1-\epsilon)$-approximation in $t(\epsilon)\cdot poly(|{\cal I}|)$ time, where $t(\cdot)$ is a function that depends only on $\epsilon$ and $|{\cal I}|$ denotes the input length. Technically speaking, our approach relies on presenting tailor-made reductions to a newly-introduced multi-dimensional Santa Claus problem. Even though the single-dimensional version of this problem is already known to be APX-Hard, we prove that an EPTAS can be designed for a constant number of machines and dimensions, which hold for each of our applications. To demonstrate the versatility of our framework, we first study selection-stopping settings to derive an EPTAS for the Free-Order Prophets problem [Agrawal et al., EC~'20] and for its cost-driven generalization, Pandora's Box with Commitment [Fu et al., ICALP~'18]. These results constitute the first approximation schemes in the non-adaptive setting and improve on known \emph{inefficient} polynomial time approximation schemes (PTAS) for their adaptive variants. Next, turning our attention to stochastic probing problems, we obtain an EPTAS for the adaptive ProbeMax problem as well as for its non-adaptive counterpart; in both cases, state-of-the-art approximability results have been inefficient PTASes [Chen et al., NIPS~'16; Fu et al., ICALP~'18].

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.