Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data fusion methods for the heterogeneity of treatment effect and confounding function (2007.12922v3)

Published 25 Jul 2020 in stat.ME

Abstract: The heterogeneity of treatment effect (HTE) lies at the heart of precision medicine. Randomized controlled trials are gold-standard for treatment effect estimation but are typically underpowered for heterogeneous effects. In contrast, large observational studies have high predictive power but are often confounded due to the lack of randomization of treatment. We show that an observational study, even subject to hidden confounding, may be used to empower trials in estimating the HTE using the notion of confounding function. The confounding function summarizes the impact of unmeasured confounders on the difference between the observed treatment effect and the causal treatment effect, given the observed covariates, which is unidentifiable based only on the observational study. Coupling the trial and observational study, we show that the HTE and confounding function are identifiable. We then derive the semiparametric efficient scores and the integrative estimators of the HTE and confounding function. We clarify the conditions under which the integrative estimator of the HTE is strictly more efficient than the trial estimator. Finally, we illustrate the integrative estimators via simulation and an application.

Citations (31)

Summary

We haven't generated a summary for this paper yet.