Papers
Topics
Authors
Recent
Search
2000 character limit reached

Modal Uncertainty Estimation via Discrete Latent Representation

Published 25 Jul 2020 in cs.LG, cs.CV, and stat.ML | (2007.12858v1)

Abstract: Many important problems in the real world don't have unique solutions. It is thus important for machine learning models to be capable of proposing different plausible solutions with meaningful probability measures. In this work we introduce such a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures. We call our framework {\it modal uncertainty estimation} since we model the one-to-many mappings to be generated through a set of discrete latent variables, each representing a latent mode hypothesis that explains the corresponding type of input-output relationship. The discrete nature of the latent representations thus allows us to estimate for any input the conditional probability distribution of the outputs very effectively. Both the discrete latent space and its uncertainty estimation are jointly learned during training. We motivate our use of discrete latent space through the multi-modal posterior collapse problem in current conditional generative models, then develop the theoretical background, and extensively validate our method on both synthetic and realistic tasks. Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods, and is informative and convenient for practical use.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.