Papers
Topics
Authors
Recent
2000 character limit reached

New interpretations of the higher Stasheff--Tamari orders

Published 24 Jul 2020 in math.CO and math.RT | (2007.12664v4)

Abstract: In 1996, Edelman and Reiner defined the two higher Stasheff--Tamari orders on triangulations of cyclic polytopes and conjectured them to coincide. We open up an algebraic angle for approaching this conjecture by showing how these orders arise naturally in the representation theory of the higher Auslander algebras of type $A$, denoted $A_{n}{d}$. For this we give new combinatorial interpretations of the orders, making them comparable. We then translate these combinatorial interpretations into the algebraic framework. We also show how triangulations of odd-dimensional cyclic polytopes arise in the representation theory of $A_{n}{d}$, namely as equivalence classes of maximal green sequences. We furthermore give the odd-dimensional counterpart to the known description of $2d$-dimensional triangulations as sets of non-intersecting $d$-simplices of a maximal size. This consists in a definition of two new properties which imply that a set of $d$-simplices produces a $(2d+1)$-dimensional triangulation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.