Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of parity sheaves arising from graded Lie algebra (2007.12638v1)

Published 24 Jul 2020 in math.RT

Abstract: Let $G$ be a complex, connected, reductive, algebraic group, and $\chi:\mathbb{C}\times \to G$ be a fixed cocharacter that defines a grading on $\mathfrak{g}$, the Lie algebra of $G$. Let $G_0$ be the centralizer of $\chi(\mathbb{C}\times)$. In this paper, we study $G_0$-equivariant parity sheaves on $\mathfrak{g}_n$, under some assumptions on the field $\Bbbk$ and the group $G$. The assumption on $G$ holds for $GL_n$ and for any $G$, it recovers results of Lusztig in characteristic $0$. The main result is that every parity sheaf occurs as a direct summand of the parabolic induction of some cuspidal pair.

Summary

We haven't generated a summary for this paper yet.