Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compact Hypergroups from Discrete Subfactors (2007.12384v2)

Published 24 Jul 2020 in math.OA, math-ph, math.FA, math.MP, and math.QA

Abstract: Conformal inclusions of chiral conformal field theories, or more generally inclusions of quantum field theories, are described in the von Neumann algebraic setting by nets of subfactors, possibly with infinite Jones index if one takes non-rational theories into account. With this situation in mind, we study in a purely subfactor theoretical context a certain class of braided discrete subfactors with an additional commutativity constraint, that we call locality, and which corresponds to the commutation relations between field operators at space-like distance in quantum field theory. Examples of subfactors of this type come from taking a minimal action of a compact group on a factor and considering the fixed point subalgebra. We show that to every irreducible local discrete subfactor $\mathcal{N}\subset\mathcal{M}$ of type ${I!I!I}$ there is an associated canonical compact hypergroup (an invariant for the subfactor) which acts on $\mathcal{M}$ by unital completely positive (ucp) maps and which gives $\mathcal{N}$ as fixed points. To show this, we establish a duality pairing between the set of all $\mathcal{N}$-bimodular ucp maps on $\mathcal{M}$ and a certain commutative unital $C*$-algebra, whose spectrum we identify with the compact hypergroup. If the subfactor has depth 2, the compact hypergroup turns out to be a compact group. This rules out the occurrence of compact \emph{quantum} groups acting as global gauge symmetries in local conformal field theory.

Summary

We haven't generated a summary for this paper yet.