Papers
Topics
Authors
Recent
2000 character limit reached

A Nonparametric Test of Dependence Based on Ensemble of Decision Trees

Published 24 Jul 2020 in stat.ME, cs.LG, and stat.ML | (2007.12325v1)

Abstract: In this paper, a robust non-parametric measure of statistical dependence, or correlation, between two random variables is presented. The proposed coefficient is a permutation-like statistic that quantifies how much the observed sample S_n : {(X_i , Y_i), i = 1 . . . n} is discriminable from the permutated sample S_nn : {(X_i , Y_j), i, j = 1 . . . n}, where the two variables are independent. The extent of discriminability is determined using the predictions for the, interchangeable, leave-out sample from training an aggregate of decision trees to discriminate between the two samples without materializing the permutated sample. The proposed coefficient is computationally efficient, interpretable, invariant to monotonic transformations, and has a well-approximated distribution under independence. Empirical results show the proposed method to have a high power for detecting complex relationships from noisy data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.