Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Right for the Right Reason: Making Image Classification Robust (2007.11924v2)

Published 23 Jul 2020 in cs.CV and cs.LG

Abstract: The effectiveness of Convolutional Neural Networks (CNNs)in classifying image data has been thoroughly demonstrated. In order to explain the classification to humans, methods for visualizing classification evidence have been developed in recent years. These explanations reveal that sometimes images are classified correctly, but for the wrong reasons,i.e., based on incidental evidence. Of course, it is desirable that images are classified correctly for the right reasons, i.e., based on the actual evidence. To this end, we propose a new explanation quality metric to measure object aligned explanation in image classification which we refer to as theObAlExmetric. Using object detection approaches, explanation approaches, and ObAlEx, we quantify the focus of CNNs on the actual evidence. Moreover, we show that additional training of the CNNs can improve the focus of CNNs without decreasing their accuracy.

Summary

We haven't generated a summary for this paper yet.