Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual Segre and Verlinde numbers of projective surfaces (2007.11631v3)

Published 22 Jul 2020 in math.AG, hep-th, and math.DG

Abstract: Recently, Marian-Oprea-Pandharipande established (a generalization of) Lehn's conjecture for Segre numbers associated to Hilbert schemes of points on surfaces. Extending work of Johnson, they provided a conjectural correspondence between Segre and Verlinde numbers. For surfaces with holomorphic 2-form, we propose conjectural generalizations of their results to moduli spaces of stable sheaves of any rank. Using Mochizuki's formula, we derive a universal function which expresses virtual Segre and Verlinde numbers of surfaces with holomorphic 2-form in terms of Seiberg-Witten invariants and intersection numbers on products of Hilbert schemes of points. We prove that certain canonical virtual Segre and Verlinde numbers of general type surfaces are topological invariants and we verify our conjectures in examples. The power series in our conjectures are algebraic functions, for which we find expressions in several cases and which are permuted under certain Galois actions. Our conjectures imply an algebraic analog of the Mari~{n}o-Moore conjecture for higher rank Donaldson invariants. For ranks $3$ and $4$, we obtain explicit expressions for Donaldson invariants in terms of Seiberg-Witten invariants.

Summary

We haven't generated a summary for this paper yet.