Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties expressible in small fragments of the theory of the hyperfinite II_1 factor (2007.11628v1)

Published 22 Jul 2020 in math.OA and math.LO

Abstract: We show that any II$_1$ factor that has the same 4-quantifier theory as the hyperfinite II$_1$ factor $\mathcal{R}$ satisfies the conclusion of the Popa Factorial Commutant Embedding Problem (FCEP) and has the Brown property. These results improve recent results proving the same conclusions under the stronger assumption that the factor is actually elementarily equivalent to $\mathcal{R}$. In the same spirit, we improve a recent result of the first-named author, who showed that if (1) the amalgamated free product of embeddable factors over a property (T) base is once again embeddable, and (2) $\mathcal{R}$ is an infinitely generic embeddable factor, then the FCEP is true of all property (T) factors. In this paper, it is shown that item (2) can be weakened to assume that $\mathcal{R}$ has the same 3-quantifier theory as an infinitely generic embeddable factor.

Summary

We haven't generated a summary for this paper yet.