Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A stabilized GMRES method for singular and severely ill-conditioned systems of linear equations (2007.10853v5)

Published 19 Jul 2020 in math.NA and cs.NA

Abstract: Consider using the right-preconditioned GMRES (AB-GMRES) for obtaining the minimum-norm solution of inconsistent underdetermined systems of linear equations. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. We analyze why the method works. Numerical experiments show that the proposed method is robust and efficient, not only for applying AB-GMRES to underdetermined systems, but also for applying GMRES to severely ill-conditioned range-symmetric systems of linear equations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.