Papers
Topics
Authors
Recent
2000 character limit reached

A stabilized GMRES method for singular and severely ill-conditioned systems of linear equations

Published 19 Jul 2020 in math.NA and cs.NA | (2007.10853v5)

Abstract: Consider using the right-preconditioned GMRES (AB-GMRES) for obtaining the minimum-norm solution of inconsistent underdetermined systems of linear equations. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. We analyze why the method works. Numerical experiments show that the proposed method is robust and efficient, not only for applying AB-GMRES to underdetermined systems, but also for applying GMRES to severely ill-conditioned range-symmetric systems of linear equations.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.