2000 character limit reached
Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups (2007.10034v3)
Published 20 Jul 2020 in math.GR
Abstract: We study the quasi-isometric rigidity of a large family of finitely generated groups that split as graphs of groups with virtually free vertex groups and two-ended edge groups. Let $G$ be a group that is one-ended, hyperbolic relative to virtually abelian subgroups, and has JSJ decomposition over two-ended subgroups containing only virtually free vertex groups that aren't quadratically hanging. Our main result is that any group quasi-isometric to $G$ is abstractly commensurable to $G$. In particular, our result applies to certain "generic" HNN extensions of a free group over cyclic subgroups.