Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Equivalent Adversarial Data Augmentation for Visual Question Answering (2007.09592v1)

Published 19 Jul 2020 in cs.CV

Abstract: Visual Question Answering (VQA) has achieved great success thanks to the fast development of deep neural networks (DNN). On the other hand, the data augmentation, as one of the major tricks for DNN, has been widely used in many computer vision tasks. However, there are few works studying the data augmentation problem for VQA and none of the existing image based augmentation schemes (such as rotation and flipping) can be directly applied to VQA due to its semantic structure -- an $\langle image, question, answer\rangle$ triplet needs to be maintained correctly. For example, a direction related Question-Answer (QA) pair may not be true if the associated image is rotated or flipped. In this paper, instead of directly manipulating images and questions, we use generated adversarial examples for both images and questions as the augmented data. The augmented examples do not change the visual properties presented in the image as well as the \textbf{semantic} meaning of the question, the correctness of the $\langle image, question, answer\rangle$ is thus still maintained. We then use adversarial learning to train a classic VQA model (BUTD) with our augmented data. We find that we not only improve the overall performance on VQAv2, but also can withstand adversarial attack effectively, compared to the baseline model. The source code is available at https://github.com/zaynmi/seada-vqa.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ruixue Tang (3 papers)
  2. Chao Ma (187 papers)
  3. Wei Emma Zhang (46 papers)
  4. Qi Wu (323 papers)
  5. Xiaokang Yang (207 papers)
Citations (43)