Understanding Spatial Relations through Multiple Modalities
Abstract: Recognizing spatial relations and reasoning about them is essential in multiple applications including navigation, direction giving and human-computer interaction in general. Spatial relations between objects can either be explicit -- expressed as spatial prepositions, or implicit -- expressed by spatial verbs such as moving, walking, shifting, etc. Both these, but implicit relations in particular, require significant common sense understanding. In this paper, we introduce the task of inferring implicit and explicit spatial relations between two entities in an image. We design a model that uses both textual and visual information to predict the spatial relations, making use of both positional and size information of objects and image embeddings. We contrast our spatial model with powerful LLMs and show how our modeling complements the power of these, improving prediction accuracy and coverage and facilitates dealing with unseen subjects, objects and relations.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.