Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RISMA: Reconfigurable Intelligent Surfaces Enabling Beamforming for IoT Massive Access (2007.09386v1)

Published 18 Jul 2020 in cs.IT, eess.SP, and math.IT

Abstract: Massive access for Internet-of-Things (IoT) in beyond 5G networks represents a daunting challenge for conventional bandwidth-limited technologies. Millimeter-wave technologies (mmWave)---which provide large chunks of bandwidth at the cost of more complex wireless processors in harsher radio environments---is a promising alternative to accommodate massive IoT but its cost and power requirements are an obstacle for wide adoption in practice. In this context, meta-materials arise as a key innovation enabler to address this challenge by Re-configurable Intelligent Surfaces (RISs). In this paper we take on the challenge and study a beyond 5G scenario consisting of a multi-antenna base station (BS) serving a large set of single-antenna user equipments (UEs) with the aid of RISs to cope with non-line-of-sight paths. Specifically, we build a mathematical framework to jointly optimize the precoding strategy of the BS and the RIS parameters in order to minimize the system sum mean squared error (SMSE). This novel approach reveals convenient properties used to design two algorithms, RISMA and Lo-RISMA, which are able to either find simple and efficient solutions to our problem (the former) or accommodate practical constraints with low-resolution RISs (the latter). Numerical results show that our algorithms outperform conventional benchmarks that do not employ RIS (even with low-resolution meta-surfaces) with gains that span from 20% to 120% in sum rate performance.

Citations (69)

Summary

We haven't generated a summary for this paper yet.