Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph-based process mining (2007.09352v1)

Published 18 Jul 2020 in cs.DB

Abstract: Process mining is an area of research that supports discovering information about business processes from their execution event logs. The increasing amount of event logs in organizations challenges current process mining techniques, which tend to load data into the memory of a computer. This issue limits the organizations to apply process mining on a large scale and introduces risks due to the lack of data management capabilities. Therefore, this paper introduces and formalizes a new approach to store and retrieve event logs into/from graph databases. It defines an algorithm to compute Directly Follows Graph (DFG) inside the graph database, which shifts the heavy computation parts of process mining into the graph database. Calculating DFG in graph databases enables leveraging the graph databases' horizontal and vertical scaling capabilities in favor of applying process mining on a large scale. Besides, it removes the requirement to move data into analysts' computer. Thus, it enables using data management capabilities in graph databases. We implemented this approach in Neo4j and evaluated its performance compared with current techniques using a real log file. The result shows that our approach enables the calculation of DFG when the data is much bigger than the computational memory. It also shows better performance when dicing data into small chunks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.