Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward a Deep Learning-Driven Intrusion Detection Approach for Internet of Things (2007.09342v1)

Published 18 Jul 2020 in cs.CR

Abstract: Internet of Things (IoT) has brought along immense benefits to our daily lives encompassing a diverse range of application domains that we regularly interact with, ranging from healthcare automation to transport and smart environments. However, due to the limitation of constrained resources and computational capabilities, IoT networks are prone to various cyber attacks. Thus, defending the IoT network against adversarial attacks is of vital importance. In this paper, we present a novel intrusion detection approach for IoT networks through the application of a deep learning technique. We adopt a cutting-edge IoT dataset comprising IoT traces and realistic attack traffic, including denial of service, distributed denial of service, reconnaissance and information theft attacks. We utilise the header field information in individual packets as generic features to capture general network behaviours, and develop a feed-forward neural networks model with embedding layers (to encode high-dimensional categorical features) for multi-class classification. The concept of transfer learning is subsequently adopted to encode high-dimensional categorical features to build a binary classifier. Results obtained through the evaluation of the proposed approach demonstrate a high classification accuracy for both binary and multi-class classifiers.

Citations (120)

Summary

We haven't generated a summary for this paper yet.