Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
90 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
207 tokens/sec
2000 character limit reached

Initializing Successive Linear Programming Solver for ACOPF using Machine Learning (2007.09210v1)

Published 17 Jul 2020 in eess.SY, cs.LG, cs.SY, and math.OC

Abstract: A Successive linear programming (SLP) approach is one of the favorable approaches for solving large scale nonlinear optimization problems. Solving an alternating current optimal power flow (ACOPF) problem is no exception, particularly considering the large real-world transmission networks across the country. It is, however, essential to improve the computational performance of the SLP algorithm. One way to achieve this goal is through the efficient initialization of the algorithm with a near-optimal solution. This paper examines various ML algorithms available in the Scikit-Learn library to initialize an SLP-ACOPF solver, including examining linear and nonlinear ML algorithms. We evaluate the quality of each of these machine learning algorithms for predicting variables needed for a power flow solution. The solution is then used as an initialization for an SLP-ACOPF algorithm. The approach is tested on a congested and non-congested 3 bus systems. The results obtained from the best-performed ML algorithm in this work are compared with the results of a DCOPF solution for the initialization of an SLP-ACOPF solver.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.