Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indivisible Mixed Manna: On the Computability of MMS + PO Allocations (2007.09133v2)

Published 17 Jul 2020 in cs.GT

Abstract: In this paper we initiate the study of finding fair and efficient allocations of an indivisible mixed manna: Divide m indivisible items among n agents under the fairness notion of maximin share (MMS) and the efficiency notion of Pareto optimality (PO). A mixed manna allows an item to be a good for some agents and a chore for others. The problem of finding $\alpha$-MMS allocation for the (near) best $\alpha\in(0,1]$ for which it exists, remains unresolved even for a goods manna with constantly many agents, while the problem of finding $\alpha$-MMS+PO allocation is unexplored for any $\alpha\in(0,1]$. We make significant progress on the above questions for a mixed manna. First, we show that for any $\alpha>0$, an $\alpha$-MMS allocation may not always exist, thus ruling out solving the problem for a fixed $\alpha$. Second, towards computing $\alpha$-MMS+PO allocation for the best possible $\alpha$, we obtain a dichotomous result: We derive two conditions and show that the problem is tractable under these two conditions, while dropping either renders the problem intractable. The two conditions are: (i) number of agents is a constant, and (ii) for every agent, her absolute value for all the items is at least a constant factor of her total (absolute) value for all the goods or all the chores. In particular, first, for instances satisfying (i) and (ii) we design a PTAS - an efficient algorithm to find an $(\alpha-\epsilon)$-MMS and $\gamma$-PO allocation when given $\epsilon,\gamma>0$, for the highest possible $\alpha\in(0,1]$. Second, we show that if either condition is not satisfied then finding an $\alpha$-MMS allocation for any $\alpha\in(0,1]$ is NP-hard, even when a solution exists for $\alpha=1$. To the best of our knowledge, ours is the first algorithm that ensures both approximate MMS and PO guarantees.

Citations (6)

Summary

We haven't generated a summary for this paper yet.