Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating compositional heterogeneity into Lie Markov models for phylogenetic inference (2007.08511v2)

Published 16 Jul 2020 in q-bio.PE and stat.AP

Abstract: Phylogenetics uses alignments of molecular sequence data to learn about evolutionary trees. Substitutions in sequences are modelled through a continuous-time Markov process, characterised by an instantaneous rate matrix, which standard models assume is time-reversible and stationary. These assumptions are biologically questionable and induce a likelihood function which is invariant to a tree's root position. This hampers inference because a tree's biological interpretation depends critically on where it is rooted. Relaxing both assumptions, we introduce a model whose likelihood can distinguish between rooted trees. The model is non-stationary, with step changes in the instantaneous rate matrix at each speciation event. Exploiting recent theoretical work, each rate matrix belongs to a non-reversible family of Lie Markov models. These models are closed under matrix multiplication, so our extension offers the conceptually appealing property that a tree and all its sub-trees could have arisen from the same family of non-stationary models. We adopt a Bayesian approach, describe an MCMC algorithm for posterior inference and provide software. The biological insight that our model can provide is illustrated through an analysis in which non-reversible but stationary, and non-stationary but reversible models cannot identify a plausible root.

Summary

We haven't generated a summary for this paper yet.