Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Morph Graphs on the Torus (2007.07927v1)

Published 15 Jul 2020 in cs.CG

Abstract: We present the first algorithm to morph graphs on the torus. Given two isotopic essentially 3-connected embeddings of the same graph on the Euclidean flat torus, where the edges in both drawings are geodesics, our algorithm computes a continuous deformation from one drawing to the other, such that all edges are geodesics at all times. Previously even the existence of such a morph was not known. Our algorithm runs in $O(n{1+\omega/2})$ time, where $\omega$ is the matrix multiplication exponent, and the computed morph consists of $O(n)$ parallel linear morphing steps. Existing techniques for morphing planar straight-line graphs do not immediately generalize to graphs on the torus; in particular, Cairns' original 1944 proof and its more recent improvements rely on the fact that every planar graph contains a vertex of degree at most 5. Our proof relies on a subtle geometric analysis of 6-regular triangulations of the torus. We also make heavy use of a natural extension of Tutte's spring embedding theorem to torus graphs.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com