Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Topic Models with Survival Supervision: Jointly Predicting Time-to-Event Outcomes and Learning How Clinical Features Relate (2007.07796v2)

Published 15 Jul 2020 in cs.LG and stat.ML

Abstract: We present a neural network framework for learning a survival model to predict a time-to-event outcome while simultaneously learning a topic model that reveals feature relationships. In particular, we model each subject as a distribution over "topics", where a topic could, for instance, correspond to an age group, a disorder, or a disease. The presence of a topic in a subject means that specific clinical features are more likely to appear for the subject. Topics encode information about related features and are learned in a supervised manner to predict a time-to-event outcome. Our framework supports combining many different topic and survival models; training the resulting joint survival-topic model readily scales to large datasets using standard neural net optimizers with minibatch gradient descent. For example, a special case is to combine LDA with a Cox model, in which case a subject's distribution over topics serves as the input feature vector to the Cox model. We explain how to address practical implementation issues that arise when applying these neural survival-supervised topic models to clinical data, including how to visualize results to assist clinical interpretation. We study the effectiveness of our proposed framework on seven clinical datasets on predicting time until death as well as hospital ICU length of stay, where we find that neural survival-supervised topic models achieve competitive accuracy with existing approaches while yielding interpretable clinical topics that explain feature relationships. Our code is available at: https://github.com/georgehc/survival-topics

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets