Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An unfitted RBF-FD method in a least-squares setting for elliptic PDEs on complex geometries (2007.07775v2)

Published 15 Jul 2020 in math.NA and cs.NA

Abstract: Radial basis function generated finite difference (RBF-FD) methods for PDEs require a set of interpolation points which conform to the computational domain $\Omega$. One of the requirements leading to approximation robustness is to place the interpolation points with a locally uniform distance around the boundary of $\Omega$. However generating interpolation points with such properties is a cumbersome problem. Instead, the interpolation points can be extended over the boundary and as such completely decoupled from the shape of $\Omega$. In this paper we present a modification to the least-squares RBF-FD method which allows the interpolation points to be placed in a box that encapsulates $\Omega$. This way, the node placement over a complex domain in 2D and 3D is greatly simplified. Numerical experiments on solving an elliptic model PDE over complex 2D geometries show that our approach is robust. Furthermore it performs better in terms of the approximation error and the runtime vs. error compared with the classic RBF-FD methods. It is also possible to use our approach in 3D, which we indicate by providing convergence results of a solution over a thoracic diaphragm.

Citations (24)

Summary

We haven't generated a summary for this paper yet.