Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A survey and an extensive evaluation of popular audio declipping methods (2007.07663v2)

Published 15 Jul 2020 in eess.AS and cs.SD

Abstract: Dynamic range limitations in signal processing often lead to clipping, or saturation, in signals. The task of audio declipping is estimating the original audio signal, given its clipped measurements, and has attracted much interest in recent years. Audio declipping algorithms often make assumptions about the underlying signal, such as sparsity or low-rankness, and about the measurement system. In this paper, we provide an extensive review of audio declipping algorithms proposed in the literature. For each algorithm, we present assumptions that are made about the audio signal, the modeling domain, and the optimization algorithm. Furthermore, we provide an extensive numerical evaluation of popular declipping algorithms, on real audio data. We evaluate each algorithm in terms of the Signal-to-Distortion Ratio, and also using perceptual metrics of sound quality. The article is accompanied by a repository containing the evaluated methods.

Citations (33)

Summary

We haven't generated a summary for this paper yet.