Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A linear-time parameterized algorithm for computing the width of a DAG (2007.07575v3)

Published 15 Jul 2020 in cs.DS

Abstract: The width $k$ of a directed acyclic graph (DAG) $G = (V, E)$ equals the largest number of pairwise non-reachable vertices. Computing the width dates back to Dilworth's and Fulkerson's results in the 1950s, and is doable in quadratic time in the worst case. Since $k$ can be small in practical applications, research has also studied algorithms whose complexity is parameterized on $k$. Despite these efforts, it is still open whether there exists a linear-time $O(f(k)(|V| + |E|))$ parameterized algorithm computing the width. We answer this question affirmatively by presenting an $O(k24k|V| + k2k|E|)$ time algorithm, based on a new notion of frontier antichains. As we process the vertices in a topological order, all frontier antichains can be maintained with the help of several combinatorial properties, paying only $f(k)$ along the way. The fact that the width can be computed by a single $f(k)$-sweep of the DAG is a new surprising insight into this classical problem. Our algorithm also allows deciding whether the DAG has width at most $w$ in time $O(f(\min(w,k))(|V|+|E|))$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.