Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Coherency in Generated Emails by Leveraging Deep Neural Learners (2007.07403v1)

Published 14 Jul 2020 in cs.CL

Abstract: Advanced machine learning and natural language techniques enable attackers to launch sophisticated and targeted social engineering-based attacks. To counter the active attacker issue, researchers have since resorted to proactive methods of detection. Email masquerading using targeted emails to fool the victim is an advanced attack method. However automatic text generation requires controlling the context and coherency of the generated content, which has been identified as an increasingly difficult problem. The method used leverages a hierarchical deep neural model which uses a learned representation of the sentences in the input document to generate structured written emails. We demonstrate the generation of short and targeted text messages using the deep model. The global coherency of the synthesized text is evaluated using a qualitative study as well as multiple quantitative measures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.