Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Concept Learners for Few-Shot Learning (2007.07375v3)

Published 14 Jul 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Developing algorithms that are able to generalize to a novel task given only a few labeled examples represents a fundamental challenge in closing the gap between machine- and human-level performance. The core of human cognition lies in the structured, reusable concepts that help us to rapidly adapt to new tasks and provide reasoning behind our decisions. However, existing meta-learning methods learn complex representations across prior labeled tasks without imposing any structure on the learned representations. Here we propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions. Instead of learning a joint unstructured metric space, COMET learns mappings of high-level concepts into semi-structured metric spaces, and effectively combines the outputs of independent concept learners. We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation on a novel dataset from a biological domain developed in our work. COMET significantly outperforms strong meta-learning baselines, achieving 6-15% relative improvement on the most challenging 1-shot learning tasks, while unlike existing methods providing interpretations behind the model's predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kaidi Cao (26 papers)
  2. Maria Brbic (11 papers)
  3. Jure Leskovec (233 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.