Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Beamforming Design for IRS-Aided Communications with Channel Estimation Errors (2007.06859v1)

Published 14 Jul 2020 in cs.IT, eess.SP, and math.IT

Abstract: This paper investigates the joint design of the beamforming scheme in intelligent reflecting surface (IRS) assisted multiuser (MU) multiple-input multiple-output (MIMO) downlink transmissions. Channel estimation errors associated with the minimum mean square error (MMSE) estimation are assumed and the weighted sum rate (WSR) is adopted as the performance metric. Low-resolution phase shifters (PSs) in practical implementations are taken into account as well. Under the constraint of the transmit power and discrete phase shifters (PSs), an optimization problem is formulated to maximize the WSR of all users. To obtain the optimal beamforming matrices at the IRS, two solutions based on the majorization-minimization (MM) and successive convex approximation (SCA) methods, respectively, are proposed. Through simulation results, both of the proposed two schemes achieve a significant improvement in WSR. Furthermore, the superiority of the SCA-based solution is demonstrated. Overall, two viable solutions to the joint beamforming design in IRS-aided MU-MIMO downlink communication systems with channel estimation errors are provided.

Citations (1)

Summary

We haven't generated a summary for this paper yet.