Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can neural networks acquire a structural bias from raw linguistic data? (2007.06761v2)

Published 14 Jul 2020 in cs.CL

Abstract: We evaluate whether BERT, a widely used neural network for sentence processing, acquires an inductive bias towards forming structural generalizations through pretraining on raw data. We conduct four experiments testing its preference for structural vs. linear generalizations in different structure-dependent phenomena. We find that BERT makes a structural generalization in 3 out of 4 empirical domains---subject-auxiliary inversion, reflexive binding, and verb tense detection in embedded clauses---but makes a linear generalization when tested on NPI licensing. We argue that these results are the strongest evidence so far from artificial learners supporting the proposition that a structural bias can be acquired from raw data. If this conclusion is correct, it is tentative evidence that some linguistic universals can be acquired by learners without innate biases. However, the precise implications for human language acquisition are unclear, as humans learn language from significantly less data than BERT.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alex Warstadt (35 papers)
  2. Samuel R. Bowman (103 papers)
Citations (52)

Summary

We haven't generated a summary for this paper yet.