Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Water level prediction from social media images with a multi-task ranking approach (2007.06749v1)

Published 14 Jul 2020 in cs.CV and cs.LG

Abstract: Floods are among the most frequent and catastrophic natural disasters and affect millions of people worldwide. It is important to create accurate flood maps to plan (offline) and conduct (real-time) flood mitigation and flood rescue operations. Arguably, images collected from social media can provide useful information for that task, which would otherwise be unavailable. We introduce a computer vision system that estimates water depth from social media images taken during flooding events, in order to build flood maps in (near) real-time. We propose a multi-task (deep) learning approach, where a model is trained using both a regression and a pairwise ranking loss. Our approach is motivated by the observation that a main bottleneck for image-based flood level estimation is training data: it is diffcult and requires a lot of effort to annotate uncontrolled images with the correct water depth. We demonstrate how to effciently learn a predictor from a small set of annotated water levels and a larger set of weaker annotations that only indicate in which of two images the water level is higher, and are much easier to obtain. Moreover, we provide a new dataset, named DeepFlood, with 8145 annotated ground-level images, and show that the proposed multi-task approach can predict the water level from a single, crowd-sourced image with ~11 cm root mean square error.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. P. Chaudhary (5 papers)
  2. S. D'Aronco (1 paper)
  3. J. P. Leitao (1 paper)
  4. K. Schindler (3 papers)
  5. J. D. Wegner (2 papers)
Citations (42)

Summary

We haven't generated a summary for this paper yet.