Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subgrid-scale parametrization of unresolved scales in forced Burgers equation using Generative Adversarial Networks (GAN) (2007.06692v2)

Published 13 Jul 2020 in physics.comp-ph, nlin.CD, and physics.ao-ph

Abstract: Stochastic subgrid-scale parametrizations aim to incorporate effects of unresolved processes in an effective model by sampling from a distribution usually described in terms of resolved modes. This is an active research area in climate, weather and ocean science where processes evolved in a wide range of spatial and temporal scales. In this study, we evaluate the performance of conditional generative adversarial network (GAN) in parametrizing subgrid-scale effects in a finite-difference discretization of stochastically forced Burgers equation. We define resolved modes as local spatial averages and deviations from these averages are the unresolved degrees of freedom. We train a Wasserstein GAN (WGAN) conditioned on the resolved variables to learn the distribution of subgrid flux tendencies for resolved modes and, thus, represent the effect of unresolved scales. The resulting WGAN is then used in an effective model to reproduce the statistical features of resolved modes. We demonstrate that various stationary statistical quantities such as spectrum, moments, autocorrelation, etc. are well approximated by this effective model.

Summary

We haven't generated a summary for this paper yet.