Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On uncertainty estimation in active learning for image segmentation (2007.06364v1)

Published 13 Jul 2020 in cs.CV and cs.LG

Abstract: Uncertainty estimation is important for interpreting the trustworthiness of machine learning models in many applications. This is especially critical in the data-driven active learning setting where the goal is to achieve a certain accuracy with minimum labeling effort. In such settings, the model learns to select the most informative unlabeled samples for annotation based on its estimated uncertainty. The highly uncertain predictions are assumed to be more informative for improving model performance. In this paper, we explore uncertainty calibration within an active learning framework for medical image segmentation, an area where labels often are scarce. Various uncertainty estimation methods and acquisition strategies (regions and full images) are investigated. We observe that selecting regions to annotate instead of full images leads to more well-calibrated models. Additionally, we experimentally show that annotating regions can cut 50% of pixels that need to be labeled by humans compared to annotating full images.

Citations (14)

Summary

We haven't generated a summary for this paper yet.