Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector-Quantized Timbre Representation (2007.06349v1)

Published 13 Jul 2020 in eess.AS and cs.LG

Abstract: Timbre is a set of perceptual attributes that identifies different types of sound sources. Although its definition is usually elusive, it can be seen from a signal processing viewpoint as all the spectral features that are perceived independently from pitch and loudness. Some works have studied high-level timbre synthesis by analyzing the feature relationships of different instruments, but acoustic properties remain entangled and generation bound to individual sounds. This paper targets a more flexible synthesis of an individual timbre by learning an approximate decomposition of its spectral properties with a set of generative features. We introduce an auto-encoder with a discrete latent space that is disentangled from loudness in order to learn a quantized representation of a given timbre distribution. Timbre transfer can be performed by encoding any variable-length input signals into the quantized latent features that are decoded according to the learned timbre. We detail results for translating audio between orchestral instruments and singing voice, as well as transfers from vocal imitations to instruments as an intuitive modality to drive sound synthesis. Furthermore, we can map the discrete latent space to acoustic descriptors and directly perform descriptor-based synthesis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Adrien Bitton (8 papers)
  2. Philippe Esling (29 papers)
  3. Tatsuya Harada (142 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.