Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A model of interaction semantics (2007.06258v3)

Published 13 Jul 2020 in cs.AI and cs.CL

Abstract: Purpose: The purpose of this article is to propose, based on a model of an interaction semantics, a certain understanding of the ''meaning'' of the exchanged characters within an interaction. Methodology: Based on a model of system interaction, I structure the model of interaction semantics similar to the semantics of a formal language: first, I identify adequate variables in my interaction model to assign values to, and second, I identify the interpretation function to provide meaning. Thereby I arrive at a model of interaction semantics which, in the sense of the late Ludwig Wittgenstein, can do without a 'mental' mapping from characters to concepts. Findings: The key findings are a better understanding of the tight relation between the informatical approach to model interactions and game theory; of the central 'chicken and egg' problem, any natural language has to solve, namely that to interact sensibly, we have to understand each other and to acquire a common understanding, we have to interact with each other, which I call the 'simultaneous interaction and understanding (SIAU)' problem; why ontologies are less 'semantic' then their proponents suggest; and how 'semantic' interoperability is to be achieved. Value: The main value of the proposed model of interaction semantics is that it could be applied in many different disciplines and therefore could serve as a basis for scientists of natural sciences and humanities as well as engineers to understand each other more easily talking about semantics, especially with the advent of cyber-physical systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. he Works of Aristotle. Vol. 1 Categoriae and De Interpreatione : Analytica Priora. Oxford London: Oxford University Press : Humphrey Milford; 1928.
  2. Peirce CS. What is a sign? In: Houser N, Eller JR, Lewis AC, De Tienne A, Clark CL, Davis DB, editors. The essential Peirce: selected philosophical writings. vol. 2. Indiana University Press; 1992. p. 4-10.
  3. Ogden CK, Richards IA. The meaning of meaning: A study of the influence of thought and of the science of symbolism. Harcourt, Brace & World, Inc.; 1923.
  4. "Deutsche Normungsroadmap Industrie 4.0, Version 5". DIN e.V. und DKE; 2023.
  5. "Semantic interoperability: challenges in the digital transformation age". IEC; 2019.
  6. Wittgenstein L. Philosophical Investigations. Oxford: Basil Blackwell; 1953. Transl. by G. E. M. Anscombe.
  7. Lewis D. "Convention: A Philosophical Study". 1st ed. Harvard University Press; 1969.
  8. Crawford VP, Sobel J. Strategic information transmission. Econometrica: Journal of the Econometric Society. 1982:1431-51.
  9. Wärneryd K. Cheap talk, coordination, and evolutionary stability. Games and Economic Behavior. 1993;5(4):532-46.
  10. Smith JM, Price GR. The Logic of Animal Conflict. Nature. 1973;246(2):15 -18.
  11. Grice HP. Studies in the Way of Words. Harvard University Press; 1989.
  12. Zhuge H. Interactive semantics. Artificial Intelligence. 2010;174(2):190-204.
  13. Jaszczolt KM. Meaning in linguistic interaction: semantics, metasemantics, philosophy of language. Oxford University Press; 2016.
  14. Skyrms B. Signals: Evolution, learning, and information. OUP Oxford; 2010.
  15. A model for the semantics of component interactions of cyber-physical systems. In: Industrial Electronics (ISIE), 2016 IEEE 25th International Symposium on. IEEE; 2016. p. 1042-7.
  16. Araki N. Chomsky’s I-language and E-language. Hiroshima Institute of Technology Research. 2017:17-24.
  17. Hartley RVL. Transmission of information. Bell Labs Technical Journal. 1928;7(3):535-63.
  18. Shannon CE. A Mathematical Theory of Information. Bell System Technical Journal. 1948;27:379-423, 623-56.
  19. Shannon CE. Communication in the Presence of Noise. Proceedings of the IRE. 1949;37(1):10-21.
  20. Reich J. Verwirrende Informatik I – Systeme, Informationen, Berechenbarkeit und Daten. Informatik Spektrum. 2022;55(6):372-80.
  21. Katz J, Lindell Y. Introduction to Modern Cryprography. 2nd ed. Chapman & Hall/CRC; 2015.
  22. Holzmann GJ. Design and validation of computer protocols. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.; 1991.
  23. Reich J. Verwirrende Informatik II – Interaktion und Koordination von Systemen. Informatik Spektrum. 2023:1-8.
  24. Sakarovitch J. Elements of Automata Theory. Cambridge University Press; 2009.
  25. A calculus of mobile processes (parts I and II). Information and Computation. 1992;100(1):1-77.
  26. Harel D, Pnueli A. On the Development of Reactive Systems. In: Apt KR, editor. Logics and Models of Concurrent Systems. Springer-Verlag, New York; 1985. p. 477-98.
  27. Poslad S. Specifying Protocols for Multi-agent Systems Interaction. ACM Trans Auton Adapt Syst. 2007 Nov;2(4).
  28. Broy M. A Logical Basis for Component-Oriented Software and Systems Engineering. Comput J. 2010;53(10):1758-82.
  29. Reich J. Finite System Composition and Interaction. In: Fähnrich KP, Franczyk B, editors. 40. GI Jahrestagung (2). vol. 176 of LNI. GI; 2010. p. 603.
  30. Reich J. Komposition und Interoperabilität von IT-Systeme. Informatik Spektrum. 2021;40:339-46.
  31. Farwer B. Omega-Automata. In: Grädel E, Thomas W, Wilke T, editors. Automata, Logics, and Infinite Games. vol. 2500 of Lecture Notes in Computer Science. Springer; 2001. p. 3-20.
  32. van Benthem J, et al. Games that make sense: Logic, language and multi-agent interaction. New perspectives on games and interaction. 2008;4:197-209.
  33. Alur R. Principles of Cyber-Physical Systems. MIT Press; 2015.
  34. "Probabilistic Robotics". The Mit Press; 2005.
  35. Language, Games, and Evolution: An Introduction. In: Benz A, Ebert C, Jäger G, van Rooij R, editors. Language, Games, and Evolution: Trends in current research on language and game theory. vol. 6207. Springer-Verlag Berlin Heidelberg; 2011. p. 1-13.
  36. Learning Language Games through Interaction. CoRR. 2016;abs/1606.02447.
  37. Talcott C. Interaction semantics for components of distributed systems. In: Najm E, Stefani JB, editors. Formal Methods for Open Object-based Distributed Systems. IFIP Advances in Information and Communication Technology. Springer; 1997. p. 154-69.
  38. Schröder T, Diedrich C. Formal Definition of the Term ”Semantic” as a Foundation for Semantic Interoperability in the Industrial Internet of Things. accepted at ifac2020. 2020.
  39. Lorenzen P, Lorenz K. "Dialogische Logik". Wissenschaftliche Buchgesellschaft, Darmstadt; 1978.
  40. Hintikka J, Sandu G. Game-theoretical semantics. In: Handbook of logic and language. Elsevier; 1997. p. 361-410.
  41. Bunt H, Muskens R. Computational semantics. In: Computing meaning. Springer; 1999. p. 1-32.
  42. Boleda G. Distributional semantics and linguistic theory. Annual Review of Linguistics. 2020.
  43. Myerson RB. Game Theory: Analysis of Conflict. Harvard University Press, Cambridge, Massachusetts; 1991. Reprinted 1997 as paperback.
  44. Morris CW. Foundations of the Theory of Signs. In: International encyclopedia of unified science. vol. 1. Chicago University Press; 1938. p. 1-59.
  45. Gruber TR. Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies. 1995;43(5):907-28.
  46. Genesereth MR, Nilsson NJ. Logical foundations of artificial intelligence. Morgan Kaufmann; 1987.
  47. Feilmayr C, Wöß W. An analysis of ontologies and their success factors for application to business. Data & Knowledge Engineering. 2016;101:1-23. Available from: https://www.sciencedirect.com/science/article/pii/S0169023X1500110X.
  48. Hepp M. In: Hepp M, De Leenheer P, De Moor A, Sure Y, editors. Ontologies: State of the Art, Business Potential, and Grand Challenges. Boston, MA: Springer US; 2008. p. 3-22. Available from: https://doi.org/10.1007/978-0-387-69900-4_1.
  49. Jacobson I. Object Oriented Software Engineering: A Use Case Driven Approach. 1st ed. Addison-Wesley Professional; 1992.
  50. Reich J. Data. preprint arXiv:180104992. 2018.
  51. Bitkom. Vorschlag zur systematischen Klassifikation von Interaktionen in Industrie 4.0 Systemen – Hinführung zu einem Referenzmodell für semantische Interoperabilität. White paper; 2020.
  52. Shackman AJ, Lapate C Regina. How Do Emotion and Cognition Interact? In: Fox AS, Lapate RC, Shackman AJ, Davidson RJ, editors. The nature of emotion. Fundamental questions. 2nd ed. Oxford University Press; 2018. p. 209-11.
  53. Tarski A. Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica Commentarii Societatis Philosophicae Polonorum. 1935;1:261 405. Auch in: Tarski, Givant, McKenzie (1986), S. 53 – 197.

Summary

We haven't generated a summary for this paper yet.