Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unconditionally positivity preserving and energy dissipative schemes for Poisson--Nernst--Planck equations

Published 12 Jul 2020 in math.NA and cs.NA | (2007.06132v1)

Abstract: We develop a set of numerical schemes for the Poisson--Nernst--Planck equations. We prove that our schemes are mass conservative, uniquely solvable and keep positivity unconditionally. Furthermore, the first-order scheme is proven to be unconditionally energy dissipative. These properties hold for various spatial discretizations. Numerical results are presented to validate these properties. Moreover, numerical results indicate that the second-order scheme is also energy dissipative, and both the first- and second-order schemes preserve the maximum principle for cases where the equation satisfies the maximum principle.

Citations (46)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.