Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fair Division with Binary Valuations: One Rule to Rule Them All (2007.06073v2)

Published 12 Jul 2020 in cs.GT

Abstract: We study fair allocation of indivisible goods among agents. Prior research focuses on additive agent preferences, which leads to an impossibility when seeking truthfulness, fairness, and efficiency. We show that when agents have binary additive preferences, a compelling rule -- maximum Nash welfare (MNW) -- provides all three guarantees. Specifically, we show that deterministic MNW with lexicographic tie-breaking is group strategyproof in addition to being envy-free up to one good and Pareto optimal. We also prove that fractional MNW -- known to be group strategyproof, envy-free, and Pareto optimal -- can be implemented as a distribution over deterministic MNW allocations, which are envy-free up to one good. Our work establishes maximum Nash welfare as the ultimate allocation rule in the realm of binary additive preferences.

Citations (85)

Summary

We haven't generated a summary for this paper yet.