Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of two-stage iterative scheme for $K$-weak regular splittings of type II with application to Covid-19 pandemic model (2007.06047v1)

Published 12 Jul 2020 in math.NA and cs.NA

Abstract: Monotone matrices play a key role in the convergence theory of regular splittings and different types of weak regular splittings. If monotonicity fails, then it is difficult to guarantee the convergence of the above-mentioned classes of matrices. In such a case, $K$-monotonicity is sufficient for the convergence of $K$-regular and $K$-weak regular splittings, where $K$ is a proper cone in $\mathbb{R}n$. However, the convergence theory of a two-stage iteration scheme in general proper cone setting is a gap in the literature. Especially, the same study for weak regular splittings of type II (even if in standard proper cone setting, i.e., $K=\mathbb{R}n_+$), is open. To this end, we propose convergence theory of two-stage iterative scheme for $K$-weak regular splittings of both types in the proper cone setting. We provide some sufficient conditions which guarantee that the induced splitting from a two-stage iterative scheme is a $K$-regular splitting and then establish some comparison theorems. We also study $K$-monotone convergence theory of the stationary two-stage iterative method in case of a $K$-weak regular splitting of type II. The most interesting and important part of this work is on $M$-matrices appearing in the Covid-19 pandemic model. Finally, numerical computations are performed using the proposed technique to compute the next generation matrix involved in the pandemic model.

Summary

We haven't generated a summary for this paper yet.