Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Jacobian-based Saliency Maps Attacks (2007.06032v4)

Published 12 Jul 2020 in cs.CV, cs.CR, and cs.LG

Abstract: Neural network classifiers (NNCs) are known to be vulnerable to malicious adversarial perturbations of inputs including those modifying a small fraction of the input features named sparse or $L_0$ attacks. Effective and fast $L_0$ attacks, such as the widely used Jacobian-based Saliency Map Attack (JSMA) are practical to fool NNCs but also to improve their robustness. In this paper, we show that penalising saliency maps of JSMA by the output probabilities and the input features of the NNC allows to obtain more powerful attack algorithms that better take into account each input's characteristics. This leads us to introduce improved versions of JSMA, named Weighted JSMA (WJSMA) and Taylor JSMA (TJSMA), and demonstrate through a variety of white-box and black-box experiments on three different datasets (MNIST, CIFAR-10 and GTSRB), that they are both significantly faster and more efficient than the original targeted and non-targeted versions of JSMA. Experiments also demonstrate, in some cases, very competitive results of our attacks in comparison with the Carlini-Wagner (CW) $L_0$ attack, while remaining, like JSMA, significantly faster (WJSMA and TJSMA are more than 50 times faster than CW $L_0$ on CIFAR-10). Therefore, our new attacks provide good trade-offs between JSMA and CW for $L_0$ real-time adversarial testing on datasets such as the ones previously cited. Codes are publicly available through the link https://github.com/probabilistic-jsmas/probabilistic-jsmas.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com